张达威
姓名:张达威
所在系所:表面科学与技术研究所
职称:教授
通信地址:北京市海淀区学院路30号北京科技大学腐蚀楼
邮编: 100083
办公地点:
办公电话:010-62332806
邮箱:dzhang@ustb.edu.cn
个人简介
研究方向
科研业绩
1. Ma, J., Dai, J., Guo, X., Fu, D., Ma, L., Keil, P., Mol, A. and Zhang, D., 2023. Data-driven corrosion inhibition efficiency prediction model incorporating 2D–3D molecular graphs and inhibitor concentration. Corrosion Science , 222 , p.111420.
2. Wang, J., Ma, L., Chen, Z., Wang, Y., Ren, C., Liu, T., Ma, L., Lin, C. and Zhang, D., 2023. Multi-channel preparation and high-throughput screening of coating fillers with optimized corrosion sensing and inhibition properties for smart protective coatings. Corrosion Science , 222 , p.111390.
3. Liu, T., Zhang, D., Zhang, R., Wang, J., Ma, L., Keil, P., Mol, A. and Li, X., 2023. Self-healing and corrosion-sensing coatings based on pH-sensitive MOF-capped microcontainers for intelligent corrosion control. Chemical Engineering Journal , 454 , p.140335.
4. Yang, J., Ran, Y., Liu, S., Ren, C., Lou, Y., Ju, P., Li, G., Li, X. and Zhang, D., 2023. Synergistic D‐Amino Acids Based Antimicrobial Cocktails Formulated via High‐Throughput Screening and Machine Learning. Advanced Science , p.2307173.
5. Liu, T., Chen, Z., Yang, J., Ma, L., Mol, A. and Zhang, D., 2024. Machine learning assisted discovery of high-efficiency self-healing epoxy coating for corrosion protection. npj Materials Degradation, 8(1), p.11.
6. Fu, Z., Guo, X., Zhang, X., Legut, D. and Zhang, D., 2024. Towards rational design of organic copper corrosion inhibitors: High-throughput computational evaluation of standard adsorption Gibbs energy. Corrosion Science , 227 , p.111783.
7. Lou, Y., Chang, W., Cui, T., Qian, H., Hao, X. and Zhang, D., 2023. Microbiologically influenced corrosion inhibition induced by S. putriefaciens mineralization under extracellular polymeric substance regulation via FlrA and FlhG genes. Corrosion Science , 221 , p.111350.
8. Cui, T., Qian, H., Chang, W., Zheng, H., Guo, D., Kwok, C.T., Tam, L.M. and Zhang, D., 2023. Towards understanding Shewanella algae-induced degradation of passive film of stainless steel based on electrochemical, XPS and multi-mode AFM analyses. Corrosion Science , 218 , p.111174.
9. Ren, C., Ma, L., Luo, X., Dong, C., Gui, T., Wang, B., Li, X. and Zhang, D., 2023. High-throughput assessment of corrosion inhibitor mixtures on carbon steel via droplet microarray. Corrosion Science , 213 , p.110967.
10. Dai, J., Fu, D., Song, G., Ma, L., Guo, X., Mol, A., Cole, I. and Zhang, D., 2022. Cross-category prediction of corrosion inhibitor performance based on molecular graph structures via a three-level message passing neural network model. Corrosion Science , 209 , p.110780.
11. Hu, Y., Huang, L., Lou, Y., Chang, W., Qian, H. and Zhang, D., 2022. Microbiologically influenced corrosion of stainless steels by Bacillus subtilis via bidirectional extracellular electron transfer. Corrosion Science , 207 , p.110608.
12. Cui, T., Qian, H., Lou, Y., Chen, X., Sun, T., Zhang, D. and Li, X., 2022. Single-cell level investigation of microbiologically induced degradation of passive film of stainless steel via FIB-SEM/TEM and multi-mode AFM. Corrosion Science , 206 , p.110543.
13. Liu, T., Zhang, D., Ma, L., Huang, Y., Hao, X., Terryn, H., Mol, A. and Li, X., 2022. Smart protective coatings with self‐sensing and active corrosion protection dual functionality from pH-sensitive calcium carbonate microcontainers. Corrosion Science , 200 , p.110254.
14. Qian, H.C., Chang, W.W., Cui, T.Y., Li, Z., Guo, D.W., Kwok, C.T., Tam, L.M. and Zhang, D.W., 2021. Multi-mode scanning electrochemical microscopic study of microbiologically influenced corrosion mechanism of 304 stainless steel by thermoacidophilic archaea. Corrosion Science , 191 , p.109751.
15. Li, Z., Chang, W., Cui, T., Xu, D., Zhang, D., Lou, Y., Qian, H., Song, H., Mol, A., Cao, F. and Gu, T., 2021. Adaptive bidirectional extracellular electron transfer during accelerated microbiologically influenced corrosion of stainless steel. Communications Materials , 2 (1), p.67.
16. Liu, T., Zhao, H., Zhang, D., Lou, Y., Huang, L., Ma, L., Hao, X., Dong, L., Rosei, F. and Lau, W.M., 2021. Ultrafast and high-efficient self-healing epoxy coatings with active multiple hydrogen bonds for corrosion protection. Corrosion Science , 187 , p.109485.
17. Ma, L., Ren, C., Wang, J., Liu, T., Yang, H., Wang, Y., Huang, Y. and Zhang, D., 2021. Self-reporting coatings for autonomous detection of coating damage and metal corrosion: A review. Chemical Engineering Journal , 421 , p.127854.
18. Ma, L., Wang, J., Zhang, D., Huang, Y., Huang, L., Wang, P., Qian, H., Li, X., Terryn, H.A. and Mol, J.M., 2021. Dual-action self-healing protective coatings with photothermal responsive corrosion inhibitor nanocontainers. Chemical Engineering Journal , 404 , p.127118.
19. Wu, D., Zhang, D., Liu, S., Jin, Z., Chowwanonthapunya, T., Gao, J. and Li, X., 2020. Prediction of polycarbonate degradation in natural atmospheric environment of China based on BP-ANN model with screened environmental factors. Chemical Engineering Journal , 399 , p.125878.
20. Pei, Z., Zhang, D., Zhi, Y., Yang, T., Jin, L., Fu, D., Cheng, X., Terryn, H.A., Mol, J.M. and Li, X., 2020. Towards understanding and prediction of atmospheric corrosion of an Fe/Cu corrosion sensor via machine learning. Corrosion science , 170 , p.108697.