张 雷
姓名:张 雷
所在系所:材料失效与控制研究所
职称:研究员
通信地址:北京市海淀区学院路30号北京科技大学新材料技术研究院腐蚀楼206
邮编:100083
办公地点:腐蚀楼206
办公电话:010-62333972
邮箱:Zhanglei@ustb.edu.cn
个人简介
研究方向
科研业绩
发表论文:
[1] Yue X, Zhang L, Sun C, et al. A thermodynamic and kinetic study of the formation and evolution of corrosion product scales on 13Cr stainless steel in a geothermal environment[J]. Corrosion Science, 2020, 169: 108640.
[2] Yue X, Zhang L, Wang Y, et al. Evolution and characterization of the film formed on super 13Cr stainless steel in CO2-saturated formation water at high temperature[J]. Corrosion Science, 2020, 163: 108277.
[3] Wang Y, Hu J, Zhang L, et al. Electrochemical and thermodynamic properties of 1-phenyl-3-(phenylamino) propan-1-one with Na2WO4 on N80 steel[J]. Royal Society open science, 2020, 7(5): 191692.
[4] Wang Y, Wang Z, Zhang L, et al. Theoretical Insights into the Inhibition Performance of Three Neonicotine Derivatives as Novel Type of Inhibitors on Carbon Steel[J]. Journal of Renewable Materials, 2020, 8(7): 819.
[5] Yue X, Zhang L, Ma L, et al. Influence of a small velocity variation on the evolution of the corrosion products and corrosion behaviour of super 13Cr SS in a geothermal CO2 containing environment[J]. Corrosion Science, 2021, 178: 108983.
[6] Yue X, Ren Y, Huang L, et al. The role of Cl-in the formation of the corrosion products and localised corrosion of 15Cr martensite stainless steel under an CO2-containing extreme oilfield condition[J]. Corrosion Science, 2022, 194: 109935.
[7] Yue X, Zhang L, Hua Y. Fundamental insights into the stabilisation and chemical degradation of the corrosion product scales[J]. npj Materials Degradation, 2021, 5(1): 1-8.
[8] Wang Z, Feng Z, Fan X H, et al. Pseudo-passivation mechanism of CoCrFeNiMo0. 01 high-entropy alloy in H2S-containing acid solutions[J]. Corrosion Science, 2021, 179: 109146.
[9] Yue X, Zhang L, He X, et al. Hypo-toxicity and prominent passivation characteristics of 316 L stainless steel fabricated by direct metal laser sintering in a simulated inflammation environment[J]. Journal of Materials Science & Technology, 2021, 93: 205-220.
[10] Zhang L, Shen HJ, Lu KD, et al. Investigation of hydrogen concentration and hydrogen damage on API X80 steel surface under cathodic overprotection. International Journal of Hydrogen Energy, 2017, 42: 29888-29896.
[11] Zhang L, Cao WH, Lu KD, et al. Effect of the cathodic current density on the sub-surface concentration of hydrogen in X80 pipeline steels under cathodic protection. International Journal of Hydrogen Energy, 2017, 42: 3389-3398.
[12] Shi FX, Zhang L, Yang, JW, et al. Polymorphous FeS corrosion products of pipeline steel under highly sour conditions. Corrosion Science, 2016, 102: 103-113.
[13] Wang Z, Zhang L, Tang X, et al. The surface characterization and passive behavior of Type 316L stainless steel in H2S-containing conditions. Applied Surface Science, 2017, 423: 457-464.
[14] Ding JH, Zhang L, Lu MX, et al. The electrochemical behavior of 316L austenitic stainless steel in Cl- containing environment under different H2S partial pressures. Applied Surface Science, 2014, 289: 33-41. (Top)
[15] Zhang L, Shen HJ, Sun JY, et al. Effect of calcareous deposits on hydrogen permeation in X80 steel under cathodic protection. Materials Chemistry and Physics. 2018, 207: 123-129.
[16] Zhang L, Li HX, Shi FX, et al. Environmental boundary and formation mechanism of different types of H2S corrosion products on pipeline steel. International Journal of Minerals Metallurgy and Materials. 2017, 24: 401-409.
[17] Zhang L, Tang X, Wang Z, et al. The corrosion behaviour of 316L stainless steel in H2S environment at high temperatures. International Journal of Electrochemical, 2017, 12: 8806-8819.
[18] Ding JH, Zhang L, Li DP, et al. Stress Corrosion Cracking Mechanismof UNS S31803 Duplex Stainless Steel under High H2S-CO2 Pressure with High Cl- Content. Journal of Materials Science. 2013, 48(1):3708–3715.
[19] Yue XQ, Zhang L, Li DP, Honda H, et al. Effect of Traces of Dissolved Oxygen on the Passivation Stability of Super 13Cr Stainless Steel Under High CO2/H2S Conditions. International Journal of Electrochemical, 2017, 12: 7853-7868.
[20] Wang Z, Zhang, L, Tang X, et al. Investigation of the deterioration of passive films in H2S-containing solutions. International Journal of Minerals Metallurgy and Materials. 2017, 24: 943-953.
[21] Li DP, Zhang L, Yang JW. Effect of H2S concentration on corrosion behavior of pipeline steel under H2S/CO2 co-exist environment. International Journal of Minerals, Metallurgy and Materials, 2015, 21: 388-394
[22] 唐娴, 张雷, 王竹, 等. SO42-对含Cl-溶液中316L奥氏体不锈钢钝化行为及点蚀行为的影响研究. 工程科学学报, 2018, 40(3): 366-372.
[23] 李大朋, 张雷, 岳小琪, 等. G3合金在高温高H2S/CO2环境下临界点蚀温度研究. 稀有金属材料科学与工程, 2017, 46: 2144-2148.
[24] 李大朋, 张雷, 张春霞, 等. 热处理温度对G3合金耐点蚀性能的影响. 稀有金属材料科学与工程, 2015, 44: 1777-1781.
[25] 李大朋, 张雷, 石凤仙, 等. 温度对13Cr不锈钢在高CO2分压环境中腐蚀行为的影响. 工程科学学报, 2015, 37(11): 1463-1468.
[26] Wang J, Lu MX, Zhang L, et al. Effect of welding process on microstructure and properties of dissimilar weld joints between low alloy steel and duplex stainless steel. International Journal of Minerals, Metallurgy and Materials, 2012, 19(6): 518-524
[27] Liu Jiabin, Zhang L, Meng L. Microstructure evolution of Cu/Ag interface in the Cu-6wt.%Ag filamentary nanocomposite. Acta Materialia, 2011, 59: 1191-1197.
[28] 胡丽华,张雷,路民旭,等. 3Cr低合金管线钢及焊接接头的CO2腐蚀行为研究. 北京科技大学学报, 2010, 32(3): 245-350.
[29] 胡丽华,张雷,路民旭,等. Cr含量对低合金耐蚀管线钢焊接接头组织和性能的影响. 材料热处理学报, 2010, 31: 3.
[30] 张雷,胡丽华,路民旭. 抗CO2腐蚀低Cr管线钢组织和性能研究, 材料工程,2009,(5): 6-10
[31] Yang Jianwei, Zhang Lei, Xu Lining, Lu Minxu. Influence of H2S and CO2 corrosion scales on hydrogen permeation in X65 steel. NACE Corrosion/2008, paper no. 08412.
[32] 杨建炜, 张雷, 丁睿明, 孙建波, 路民旭. X60管线钢在湿气和溶液介质中的H2S-CO2腐蚀行为. 金属学报, 2008, 41(11): 1366
[33] 杨建炜,张雷,丁睿明,孙建波,路民旭. 管线钢在湿气介质中的H2S/CO2腐蚀行为研究, 材料工程, 2008, (11): 49
[34] 张雷,国大鹏,路民旭. Cl-含量对J55钢CO2腐蚀行为的影响, 中国腐蚀与防护学报, 2009. 29(1): 64
[35] Zhang Lei, Meng Liang. Evolution of microstructure and electrical resistivity of Cu-12wt.%Ag filamentary microcomposite with drawing deformation. Scripta Mater, 2005, 52: 1187.
[36] Zhang Lei, Meng Liang, Liu Jiabin. Effects of Cr addition on the microstructural, mechanical and electrical characteristics of Cu-6 wt.%Ag microcomposite. Scripta Mater, 2005, 52: 587.
[37] Zhang Lei, Meng Liang. Microstructure, mechanical properties and electrical conductivity of Cu-12 wt.% Ag wires annealed at different temperature. Mater Lett, 2004, 58:3888.
[38] Zhang Lei, Meng Liang. Behaviors of the interface and matrix for the Ag/Cu bimetallic laminates prepared by roll bonding and diffusion annealing. Mater Sci Eng A, 2004, 371: 65.
[39] Zhang Lei, Meng Liang. Microstructure and properties of Cu-Ag, Cu-Ag-Cr and Cu-Ag-Cr-RE alloys, Mater Sci Tech, 2003, 19(1): 75.
专利:
[1] 张雷,等,发明专利,一种恒应力加载状态下氢渗透的实验装置,201720425442.X,2018.2
[2] 张雷,等,发明专利,一种管材局部腐蚀蚀坑深度的便携式测量仪,201310090825.2,2016.5
[3] 张雷,等,发明专利,一种动态模拟垢下腐蚀的实验方法及其装置,201410140949.1,2016.8
著作:
[1] 路民旭,张雷,等著.《油气工业的腐蚀与控制》,化学工业出版社,2015.3
[2] 路民旭,张雷,等译.《管道完整性保障——实践途径》,石油工业出版社,2014.3
[3] 宿彦京 主编,张雷,参编《海洋工程材料和结构的腐蚀与防护》第14章《海洋工程材料和结构的安全评估与寿命预测》、第16章《海洋油气生产设施的腐蚀防护》. 化学工业出版社,2017.1
获奖:[1]《高硫高盐油气田地面设施用耐蚀合金腐蚀失效机理研究与选材应用》获腐蚀与防护学会一等奖,2021年
[2]《海底管道CO2-H2S腐蚀机理与预测研究》获中国腐蚀与防护学会科技进步一等奖,2013年
[3]《高硫高盐复杂油田高压/大口径玻璃钢管道应用关键技术》获中国石油工程建设协会科技进步一等奖,2021年
标准:
[1] 李天雷,李科,姜放,张雷,等. 中华人民共和国国家标准《GB/T 4157-2017 金属在硫化氢环境中抗硫化物应力开裂和应力腐蚀开裂的实验室试验方法》,2017.9
[2] GB/T 40393-2021,金属和合金的腐蚀 奥氏体不锈钢晶间腐蚀敏感性加速腐蚀试验
[3] GB/T 40403-2021,金属和合金的腐蚀 用四点弯曲法测定金属抗应力腐蚀开裂的方法