刘 超

姓名:刘 超

所在系所:腐蚀控制系统工程研究所

职称:副研究员

通信地址:北京市海淀区学院路30号北京科技大学新材料技术研究院

邮编:100083

办公地点:腐蚀楼502

办公电话:010-62333931-502

邮箱: liuchao@ustb.edu.cn

个人简介

刘超,副研究员,博士生导师,国家优秀青年科学基金获得者。担任国家材料腐蚀与防护科学数据中心管理部副部长、中国腐蚀与防护学会耐蚀钢专业委员会副秘书长、中关村材料技术联盟金属材料腐蚀与防护领域委员会副秘书长。长期立足于国家重大战略中材料腐蚀防护实际需求,开展材料局部腐蚀微区电化学技术前沿的理论与应用、腐蚀大数据理论与技术和耐蚀新材料开发等研究工作。2016年和2020年分别在比利时布鲁塞尔自由大学(Vrije Universiteit Brussel)和美国麻省理工学院(Massachu-setts Institute of Technology)访学。主持国家自然科学基金青年科学基金项目(B类)[原优秀青年科学基金项目]、面上基金项目、青年基金项目、科技部高端外国专家引进计划项目、博士后基金和中央高校基本科研项目10余项,校企合作项目20余项。在Corrosion Science和Journal of Materials Science & Technology等高水平期刊发表SCI论文70余篇、出版英文专著1部、授权发明专利10余件,参编、参修团体标准57项。兼任《Metals》、《Corrosion Communications》、《中国腐蚀与防护学报》等期刊编委或青年编委。获北京市科学技术发明一等奖(2020)、中国腐蚀与防护学会科学技术一等奖(2021、2022)、湖北省科学技术二等奖(2022)、河北省科学技术进步二等奖(2024、2025)等省部级奖励近10项,获中国腐蚀与防护学会“杰出青年”成就奖(2023)、国际腐蚀理事会青年科学家奖(2024)。

研究方向

1. 材料自然环境腐蚀规律机理与先进腐蚀评价技术
2. 局部腐蚀微区电化学理论与腐蚀大数据理论技术
3. 耐蚀钢开发

科研业绩

部分获奖信息:

1. 2025年,河北省科学技术进步二等奖;

2. 2024年,国际腐蚀理事会青年科学家奖;

3. 2024年,河北省科学技术进步二等奖;

4. 2023年,中国腐蚀与防护学会“杰出青年”成就奖;

5. 2022年,湖北省科学技术二等奖;

6. 2022年,中国腐蚀与防护学会科学技术一等奖;

7. 2021年,中国腐蚀与防护学会科学技术一等奖;

8. 2020年,北京市科学技术发明一等奖;

部分授权专利信息:

1. 刘超、孙亮、李晓刚 等;一种低成本高强韧低密度耐腐蚀的桥梁钢及其制备方法;ZL202510569920.3

2. 刘超、车智超、李晓刚 等;一种高温耐点蚀不锈钢及其制备方法;ZL202510265387.1

3. 刘超、陈天奇、李晓刚 等;一种抗氢脆Cr-Mo合金钢及其制备方法;ZL202411295809.1

4. 刘超、车智超、李晓刚 等;一种抗点蚀316L不锈钢及其制备方法;ZL202311725584.4

5. 刘超、李晓刚、程学群 等;耐蚀低密度钢及其制备方法;ZL202210127289.8

6. 刘超、张沙沙、李晓刚 等;抗点蚀马氏体硬化不锈钢;ZL202211050539.9

7. 刘超、李晓刚、程学群 等;耐腐蚀抗震钢材、钢筋及其制备方法;ZL202111046964.6


代表性专著:

Liu C, Li X. Steel Corrosion and Metallurgical Factors: Laws and Mechanisms[M]. John Wiley & Sons, 2025.

部分代表性论文:


1. Yang G, Zeng L, Shen H, et al. Unveiling the corrosion evolution and pitting mechanism of X70 pipeline steel in typical near - neutral / bentonite soil environment. Journal of Materials Science & Technology, 2026, 243: 149-166.

2. Chen T, Li C, Cai X, et al. Deterioration mechanism of passivation behavior of ductile iron induced by shrinkage defects in simulated concrete pore solution. Journal of Materials Science & Technology, 2025, 236: 136-149.

3. Chen T, Wu F, Li C, et al. Understanding the mechanism of shrinkage defects on corrosion kinetics of ductile iron. Corrosion Science, 2025, 256: 113168.

4. Chen T, Zhou X, Zhang S, et al. Insights into multiple coupling mechanisms of SO42−/Cl− and Cr/RE elements on the corrosion resistance of rebar in simulated carbonated concrete pore solution. Construction and Building Materials, 2025, 485: 141957.

5. Chen T, Wu F, Li Q, et al. Comparative study on corrosion resistance of carbon steel and ductile iron: implications for the development of corrosion-resistant steels. Corrosion Science, 2025: 113127.

6. Che Z, Xue H, Liu J, et al. A novel understanding of dislocation density effect on the corrosion resistance of 316L stainless steel with passive film nucleation growth kinetic calculation. Corrosion Science, 2025, 248: 112810.

7. Xu D, Chen T, Yang G, et al. Insight into the effect of oxygen content on the corrosion behavior of X70 pipeline steel in a typical simulated soil solution by dissolution-diffusion-deposition model. Corrosion Science, 2024, 240: 112478.

8. Chen T, Shang T, Jiang G, et al. Effect of SO2 and NH3 on the corrosion failure of Zn-Al-Mg coatings. Surface and Coatings Technology, 2024, 493: 131244.

9. Jiang Z, Chen T, Che Z, et al. Effect of Ca-Mg microalloying on corrosion behavior and corrosion resistance of low alloy steel in the marine atmospheric environment. Corrosion Science, 2024, 234: 112134.

10. Liu T, Chen T, Zhou X, et al. Investigation of Cr and rare earth (RE) on the corrosion resistance of HRB400 rebar in simulated concrete pore solutions containing chloride and sulfate ions. Construction and Building Materials, 2024, 423: 135935.

11. Liu C, Wang B, Cheng X, et al. Identification of Corrosion Factors in Blast Furnace Gas Pipe Network with Corrosion Big Data Online Monitoring Technology. Corrosion Science,2024,230,11190.

12. Li N, Wang B, Liu T, et al. Revealing the coupling of multiple corrosion behaviors in the corrosion process of titanium-steel composites in marine environment. Corrosion Science, 2024, 233: 112107.

13. Zhang T, Hao L, Jiang Z, et al. Investigation of rare earth (RE) on improving the corrosion resistance of Zr-Ti deoxidized low alloy steel in the simulated tropic marine atmospheric environment. Corrosion Science, 2023: 111335.

14. Yang S, Che Z, Liu C, et al. Mechanism of the dual effect of Te addition on the localised corrosion resistance of 15-5PH stainless steel. Corrosion Science, 2023: 110970.

15. Zhang T, Li Y, Li X, Liu, C.,et al. Integral effects of Ca and Sb on the corrosion resistance for the high strength low alloy steel in the tropical marine environment. Corrosion Science, 2022, 208: 110708.

16. Liu C, Revilla R I, Li X, et al. New insights into the mechanism of localised corrosion induced by TiN-containing inclusions in high strength low alloy steel. Journal of Materials Science & Technology, 2022, 124: 141-149.

17. Liu C, Li X, Revilla R I, et al. Towards a better understanding of localised corrosion induced by typical non-metallic inclusions in low-alloy steels. Corrosion Science, 2021, 179: 109150.

18. Liu C, Jiang Z, Zhao J, et al. Influence of rare earth metals on mechanisms of localised corrosion induced by inclusions in Zr-Ti deoxidised low alloy steel. Corrosion Science, 2020, 166: 108463.

19. Liu C, Revilla R I, Zhang D, et al. Role of Al2O3 inclusions on the localized corrosion of Q460NH weathering steel in marine environment. Corrosion Science, 2018, 138: 96-104.

20. Liu C, Revilla R I, Liu Z, et al. Effect of inclusions modified by rare earth elements (Ce, La) on localized marine corrosion in Q460NH weathering steel. Corrosion Science, 2017, 129: 82-90.