张 鹏
姓名:张 鹏
所在系所:粉末冶金研究所
职称:副研究员
通信地址:北京市海淀区学院路30号北京科技大学新材料技术研究院
邮编:100083
办公地点:金物楼223
办公电话:
邮箱:zpeng@ustb.edu.cn
个人简介
研究方向
2.纳米孪晶铜
科研业绩
[1] Zhang P*, Zhang L, Qu X H. Anomalous vertical twins with high (220) texture in direct current electroplating copper film. Applied Surface Science, 2023, 638: 158102.
[2] Zhang P, Zhang L*, Wu P F, Cao J W, Shijia C R, Wei D B, Qu X H. A Multiscale Strengthened Friction Film Enabling the Stable Braking Performance of a Copper-Based Brake Pad in High-Speed Emergency Braking. Tribology Transactions, 2023, 66(3): 519-529.
[2] Zhang P, Zhang L*, Wei D B, Wu P F, Cao J W, Shijia C R, Qu X H*. Adjusting function of MoS2 on the high-speed emergency braking properties of copper-based brake pad and the analysis of relevant tribo-film of eddy structure. Composites Part B-Engineering, 2020, 185: 107779.
[3] Zhang P, Zhang L*, Wei D B, Wu P F, Cao J W, Shijia C R, Qu X H*. A high-performance copper-based brake pad for high-speed railway trains and its surface substance evolution and wear mechanism at high temperature. Wear, 2020, 444-445: 203182.
[4] Zhang P, Zhang L*, Wu P F, Cao J W, Shijia C R, Wei D B, Qu X H*. Effect of carbon fiber on the braking performance of copper-based brake pad under continuous high-energy braking conditions. Wear, 2020, 458-459: 203408.
[5] Zhang P, Zhang L*, Wei D B, Wu P F, Cao J W, Shijia C R, Qu X H*. Substance evolution and wear mechanism on friction contact area of brake disc for high-speed railway trains at high temperature. Engineering Failure Analysis, 2020, 111: 104472.
[6] Zhang L, Fu K X, Zhang P*, Wu P F, Cao J W, Shijia C R, Wei D B, Qu X H. Improved Braking Performance of Cu-Based Brake Pads by Utilizing Cu-Coated SiO2 Powder. Tribology Transactions, 2020, 63(5): 829-840.
[7] Zhang P, Zhang L*, Wei D B, Qu X H*. Effect of matrix alloying on braking performance of copper-based brake pad under continuous emergency braking. Journal of tribology, 2020, 142(8): 081703.