副教授(副研究员)

首页» 材苑概况» 师资队伍» 粉末冶金研究所» 副教授(副研究员)
姓  名:张 鹏 所在系所:
粉末冶金研究所
职  称:
特聘副研究员
通信地址:
北京市海淀区学院路30号北京科技大学新材料技术研究院
邮  编:
100083
办公地点:
金物楼223
邮  箱:
zpeng@ustb.edu.cn

【个人简介】

张鹏,博士,特聘副研究员,硕士生导师。2021年毕业于北京科技大学,获工学博士学位。其后在北京大学工学院从事博士后研究工作,2023年起在北京科技大学新材料技术研究院进行教学科研工作。主持并参与4项包含国家自然科学基金青年基金,国家重点研发计划等在内的科技任务。从事的研究方向为铜基复合材料,纳米孪晶铜等,在Composites parts B-engineering, Wear, Tribology international等期刊上发表SCI论文15篇,申请专利11项,授权9项。先后获得2021中国有色金属工业科学技术奖发明一等奖,2023教育部高等学校科学研究优秀成果奖科学技术进步一等奖等。

【研究方向】

1.铜基复合材料
2.纳米孪晶铜

【科研业绩】

[1] Zhang P*, Zhang L, Qu X H. Anomalous vertical twins with high (220) texture in direct current electroplating copper film. Applied Surface Science, 2023, 638: 158102.

[2] Zhang P, Zhang L*, Wu P F, Cao J W, Shijia C R, Wei D B, Qu X H. A Multiscale Strengthened Friction Film Enabling the Stable Braking Performance of a Copper-Based Brake Pad in High-Speed Emergency Braking. Tribology Transactions, 2023, 66(3): 519-529.

[2] Zhang P, Zhang L*, Wei D B, Wu P F, Cao J W, Shijia C R, Qu X H*. Adjusting function of MoS2 on the high-speed emergency braking properties of copper-based brake pad and the analysis of relevant tribo-film of eddy structure. Composites Part B-Engineering, 2020, 185: 107779.

[3] Zhang P, Zhang L*, Wei D B, Wu P F, Cao J W, Shijia C R, Qu X H*. A high-performance copper-based brake pad for high-speed railway trains and its surface substance evolution and wear mechanism at high temperature. Wear, 2020, 444-445: 203182.

[4] Zhang P, Zhang L*, Wu P F, Cao J W, Shijia C R, Wei D B, Qu X H*. Effect of carbon fiber on the braking performance of copper-based brake pad under continuous high-energy braking conditions. Wear, 2020, 458-459: 203408.

[5] Zhang P, Zhang L*, Wei D B, Wu P F, Cao J W, Shijia C R, Qu X H*. Substance evolution and wear mechanism on friction contact area of brake disc for high-speed railway trains at high temperature. Engineering Failure Analysis, 2020, 111: 104472.

[6] Zhang L, Fu K X, Zhang P*, Wu P F, Cao J W, Shijia C R, Wei D B, Qu X H. Improved Braking Performance of Cu-Based Brake Pads by Utilizing Cu-Coated SiO2 Powder. Tribology Transactions, 2020, 63(5): 829-840.

[7] Zhang P, Zhang L*, Wei D B, Qu X H*. Effect of matrix alloying on braking performance of copper-based brake pad under continuous emergency braking. Journal of tribology, 2020, 142(8): 081703.