李众,博士,特聘副研究员,硕士生导师。2023年毕业于美国俄亥俄大学,获哲学(化工)博士学位。2023年起在北京科技大学新材料技术研究院进行教学科研工作。参与国家自然科学基金和校企合作项目等在内的多项项目。主要从事微生物腐蚀,应力腐蚀开裂,耐蚀新材料的研发等方面研究,在Journal of Materials Science & Technology、Construction and Building Materials、Journal of Materials Research and Technology、Process Safety and Environmental Protection、Bioelectrochemistry、Frontiers in Bioengineering and Biotechnology等期刊上发表SCI论文20篇。2021年获国际材料腐蚀工程师协会(NACE)亚太青年学者奖。
1. 微生物腐蚀 2. 应力腐蚀开裂 3. 耐蚀新材料研发
[1] Li, Z., Yang, J., Lu, S., Dou, W., & Gu, T. (2024). Stress corrosion cracking failure of X80 carbon steel U-bend caused by Desulfovibrio vulgaris biocorrosion. Journal of Materials Science & Technology, 174, 95-105.
[2] Li, Z., Yang, J., Lu, S., Dou, W., & Gu, T. (2024). Mitigation of Desulfovibrio ferrophilus IS5 degradation of X80 carbon steel mechanical properties using a green biocide. Biodegradation, 1-11.
[3] Li, Z., Yang, J., Lu, S., & Gu, T. (2023). X80 U-bend stress corrosion cracking (SCC) crack tip dissolution by fast corroding Desulfovibrio ferrophilus IS5 biofilm. Process Safety and Environmental Protection, 178, 56-64.
[4] Li, Z., Yang, J., Lu, S., Dou, W., & Gu, T. (2023). Impact of Desulfovibrio ferrophilus IS5 biocorrosion time on X80 carbon steel mechanical property degradation. Journal of Materials Research and Technology, 27, 3777-3787.
[5] Li, Z., Huang, L., Hao, W., Yang, J., Qian, H., & Zhang, D. (2022). Accelerating effect of pyocyanin on microbiologically influenced corrosion of 304 stainless steel by the Pseudomonas aeruginosa biofilm. Bioelectrochemistry, 146, 108130.
[6] Li, Z., Yang, J., Guo, H., Kumseranee, S., Punpruk, S., Mohamed, M. E., & Gu, T. (2021). Carbon source starvation of a sulfate-reducing bacterium–elevated MIC deterioration of tensile strength and strain of X80 pipeline steel. Frontiers in Materials, 8, 794051.
[7] Li, Z., Yang, J., Guo, H., Kumseranee, S., Punpruk, S., Mohamed, M. E., & Gu, T. (2022). Mechanical property degradation of X80 pipeline steel due to microbiologically influenced corrosion caused by Desulfovibrio vulgaris . Frontiers in Bioengineering and Biotechnology, 10, 1028462.
[8] Li, Z., Wu, W., He, Y., & Du, C. W. (2021). Comparison of microbiologically influenced corrosion of structural steel by nitrate-reducing bacteria in aerobic and anaerobic conditions. Construction and Building Materials, 288, 123091.
[9] Li, Z., Wu, W., He, Y., & Du, C. W. (2021). Comparison of microbiologically influenced corrosion of structural steel by nitrate-reducing bacteria in aerobic and anaerobic conditions. Construction and Building Materials, 288, 123091.
[10] Li, Z., Sun, B., Liu, Q., Yu, Y., & Liu, Z. (2021). Fundamentally understanding the effect of Non-stable cathodic potential on stress corrosion cracking of pipeline steel in Near-neutral pH solution. Construction and Building Materials, 288, 123117.
[11] Li, Z., Xu, X., Li, Y., & Liu, Z. (2021). Effect of imidazoline inhibitor on stress corrosion cracking of P110 steel in simulated annulus environments of CO2 injection well. Journal of Electroanalytical Chemistry, 886, 115105.
[12] Li, Z., Wan, H., Song, D., Liu, X., Li, Z., & Du, C. (2019). Corrosion behavior of X80 pipeline steel in the presence of Brevibacterium halotolerans in Beijing soil. Bioelectrochemistry, 126, 121-129.
[13] Li, Z., Li, C., Qian, H., Li, J., Huang, L., & Du, C. (2017). Corrosion behavior of X80 steel with coupled coating defects under alternating current interference in alkaline environment. Materials, 10(7), 720.